

Unveiling “Vetta Loader”:
A custom loader hitting Italy and spread through

infected USB Drives

2

Vetta Loader Report

 Report

3

Vetta Loader Report

 Report

DEFENCE BELONGS TO HUMANS….

4

Vetta Loader Report

 Report
Table of contents

Introduction ... 5

Technical analysis .. 6

The infection chain .. 6

Vetta Loader ... 9

Hunting other variants: .NET Variant .. 11

The USB Infector .. 17

start.py... 19

coronausb.py .. 20

cboard.py .. 22

runservice.py .. 24

Info.py .. 25

connection.py ... 28

Hunting and Overview of the Campaign .. 29

Conclusion .. 34

Indicators of Compromise.. 35

5

Vetta Loader Report

 Report
Introduction

Threat actors employ a multitude of strategies to spread malware and compromise their targets. One such prevalent

method involves the use of infected USB drives. Over the past few months, a significant number of Italian companies,

particularly those operating in the industrial, manufacturing, and digital printing sectors, have fallen victim to these

types of attacks. The susceptibility of these sectors can be attributed to their heavy reliance on pen-drives for data

sharing among customers.

In this report, Yoroi’s malware ZLab team decided to investigate a persistent threat hitting these sectors, that is

spread though infected USB drives and leverages public video services to deliver a malware loader we dubbed “Vetta

Loader” stages on victims. Thanks to some code indicators and our telemetry, we can say with a medium-high level

of confidence that is an Italian-speaking Threat Actor.

Moreover, during the threat research and pivoting activities, we identified at least four different variants of the same

malware loader, all written in different programming languages: NodeJS, Golang, Python, .NET. All of them work with

the same logic to communicate with the C2s and then download other stages.

In the following sections, we try to reconstruct the infection chain of this new quite persistent infection and all the

components we intercepted and analyzed during the research.

6

Vetta Loader Report

 Report
Technical analysis

Vetta Loader is a new malware family of loaders of other final payloads written in different programming

languages, among them NodeJS, Python, .NET, Golang. During the chain the malware downloads pieces of

malicious script from public video sharing platforms, such as Vimeo. This tactic is quite effective to bypass security

measures because security appliances tend to let pass code and commands coming from well-known public

services. Then, when the loader is installed on the victim machine, it is capable to load other malicious payloads

from its C2 and spread with an ad-hoc component.

The infection chain

The infection chain starts with a malicious USB drive, which could be infected by a previously compromised

computer, and this moves all the files contained inside the pen drive into an hidden folder.

Figure 1 Vetta Loader infection chain

The compromised pen drive has a “.lnk” file pretending to be a link to the external drive, often having the same

icon as the removable device. LNK files are frequently used for malicious payload delivery as they allow the

attacker to execute malicious command without the user being able to see them.

7

Vetta Loader Report

 Report

One of the analyzed samples has the following static information:

Hash AE10FFF5F43D712A0C00F8C6B182502CF854B149F0E59C010A7F34A2F85EDF20

Threat LNK Downloader

Threat Description Vetta Loader on a compromised USB drive

SSDEEP 12288:rvIF99CFLrtiW2KXzJ4pdd3klnnWosPhnzq:EF99CFtiW2KjJ4Td3kJnbsPhnzq

The link file execute a PowerShell script named “explorer.ps1”, which enables the second stage of the infection:

Figure 2 LNK executing explorer.ps1

8

Vetta Loader Report

 Report

The PowerShell script downloads a JSON file which contains information about a video on Vimeo, the notorious

video-sharing platform, at the link hxxps://vimeo.]com/api/v2/video/804838895.json

Figure 3 Hidden payload in the JSON

The threat actor created a fake account on the Vimeo Platform and uploaded a file and as a description of the

video an encrypted strings stored. It is possible to inspect the description both in the web page and as json file,

that is used for API usages. Now, the actual content of the malicious payload can be retrieved by using regular

expressions which showed us that the content of the script was encoded in Base64 and encrypted with an AES

algorithm.

Once ended the decoding and the decryption, the powershell script obtained is the following:

Figure 4 Last Powershell stage downloading and executing Vetta Loader

9

Vetta Loader Report

 Report

So, the next malicious stage is downloaded from

hxxps://evinfeoptasw.dedyn.]io/updater.php?from=USB1&user=6b101b5c784611ecbcda002454c152d9 at the local

path %temp%\Runtime Broker.exe

After a deep dive in this payload and hunting for other IOCs we discovered that it is a downloader developed in

NodeJS which has other variants written in languages such as .NET, Python and Golang.

Vetta Loader

This new malware stage is a complex loader having the following static information:

Hash A4F20B60A50345DDF3AC71B6E8C5EBCB9D069721B0B0EDC822ED2E7569A0BB40

Threat Downloader

Threat Description NodeJS Downloader

SSDEEP 196608:SniNp8AuRRkZShpx9NBFdd5KHdQlL0+TMjA5eeEs9xsL2/3TOGiBwn5lfNNZHof5:SniNjex3

BFj5qd8h3ziBObfN3Ir9

The sample is compiled using nexe, a command-line utility that compiles your Node.js application into a single

executable file.

As overlay of the PE, it is possible to retrieve the nexe code and other custom resources used to make the malware

actionable.

Figure 5 custom resources in the nexe code contained in the PE overlay

In this case the resources dictionary contains two of them, the first one is drivelist a legitimate package which can

be found at offset 0 with size 375808, the second one is the malicious code. To extract these resources, it is a valid

strategy to use nexe_unpacker or to easily find these resources manually by searching “process.argv.splice(1,0,

entry)” to find the starting offset, while “nexe~~sentinel” for the end.

https://github.com/nexe/nexe
https://www.npmjs.com/package/drivelist?activeTab=readme
https://www.npmjs.com/package/nexe_unpacker

10

Vetta Loader Report

 Report

Figure 6 Start of the resources

The code is highly obfuscated, but after a deobfuscation and beautifying phase of the code, the most interesting

part is the following, where it sends the following information to the C2:

from Campaign ID

path Sample path

cwd Current working directory

time System Time

temp Temp Path

programs We suppose it’s either the running processes or installed programs

Then this information is Base64 encoded and concatenated to the string below: “AA” + d (this dictionary) + “==”

Figure 7 Vetta Loder NodeJS variant

11

Vetta Loader Report

 Report
Hunting other variants: .NET Variant

Thanks to the search for other samples with similar behavior, and the analyzes carried out in this paragraph, it was

clear that the various malware identified are loaders aimed at deploying different threats.

Hash e78f9fc1df1295c561b610de97b945ff1a94c6940b59cdd3fcb605b9b1a65a0d

Threat Downloader

Threat Description .NET Downloader

SSDEEP

12288:IRZ+IoG/n9IQxW3OBsKFyIbmObrdjOa/qrvZaSMWZyxW+zDZD:S2G/nvxW3WqymsSa/

0c7WZyxWy

This time an SFX Archive is examined. After extracting the code of the Main method, it was possible to identify

some similarities with the sample written in NodeJS. Specifically, it seems to be a translation of the code from

javascript to .NET

Figure 8 Vetta Loader .NET variant, main method

12

Vetta Loader Report

 Report

The Main function of the program is characterized by the creation of a POST type HTTP request in which the

"request_data" is sent to the Command & Control hardcoded in the program. The information disclosed is as

follows:

from Campaign ID

path Sample path

username Hostname\Username

Figure 9 POST request to C2 to get additional payloads

Following the POST request, the GetUrls function takes care of parsing the http response by inserting all the fields

into a json array.

Figure 10 Parsing of the response

It then retrieves the values related to the url and the name of the payload and invoke the function aimed at

downloading it.

13

Vetta Loader Report

 Report

Figure 11 Retrieving the values from the JArray

In order for the downloaded payload to be executed correctly, the download function involves the creation of a

folder at the following path %temp%\G00GLE\{name}, after which the request is made to the dropurl for the

download.

Figure 12 Downloading and executing the payalods

At this point, the malware sets its persistence mechanism by the creating of a scheduled task with the name

BSoftware Updater Service by copying itself into %ProgramFiles%\BSoftware Updater Service\wuaupd.exe. in this

way it guarantees its execution every time any user logs on.

14

Vetta Loader Report

 Report

Figure 13 Persistence using scheduled tasks

Unfortunately, at the time of analysis, all the dropurls are no longer available or the response received does not

allow the payload to be downloaded.

Hash 742170a2102136e2d96dfe1ce9c2a41a6c049777b541723ea6d90dc22c48503b

Threat Downloader

Threat Description Golang Downloader

SSDEEP

49152:6vYgJM9riMczK89Qm8nuDspTAIO5IdVNSpyt4t0xB5PIcPw1Gjg+AvQfP/vfPWGU:orm9rrm

bDspUIwIdVNTPxgF+Av

Doing further research for similar samples, we came across a version written in Golang. As with the sample written

in .NET, similarities were also found for this sample regarding the code of the Main method; in fact, from the code

shown in the following image it is possible to notice the sending of "requested_data" whose values ("from", "path",

"username") are the same as those passed by the file written in .NET

15

Vetta Loader Report

 Report

Figure 14 Vetta Loader Golang variant, main method

Investigating the source code further, the campaign ID and the dropurl for the download of the malicious payload

were detected:

Figure 15 Strings showing the Campaign ID and dropurl

A further affinity to the previously analyzed code is present in the method that deals with the download of the

payload. In fact, even in this case there is the string \\G00GLE\\, that refers to the path where the malicious

executable is stored.

16

Vetta Loader Report

 Report

Figure 16 Method responsible for downloading and executing the payloads

Also for this variant, to establish persistence the Sample copies itself to C:\Windows\winton.exe and creates a

scheduled task to execute it at log on of any user

Figure 17 Persistence using scheduled tasks

Hash 8c25b73245ada24d2002936ea0f3bcc296fdcc9071770d818

00a2e76bfca3617

Threat Downloader

17

Vetta Loader Report

 Report

Threat Description Python Downloader

SSDEEP

24:6StL5YI9X6Z9BJyLQafcqanSXBWaxQKR5Xa/pi2007RGN1:

xtLSI9X0TJwtXBnxQKm/piTEGN1

The last variant identified in the Threat Hunting phase was a sample written in Python. Following the same

approach used for the previous samples, we start from the analysis of the code which turns out to be very similar

to those already seen. The differences are due to language constructs, but the behavior appears to be the same.

The sample in fact prepares a POST request for sending the "request_data" containing the same fields ("from",

"path" and "username"); this time it uses marshal.loads on the request response and the exec method to send the

request.

Figure 18 Vetta Loader Python variant, main method

The USB Infector

While hunting for additional samples, we managed to find the component responsible for infecting the USB

devices along with other modules capable of collecting systeminfo and a clipper.

Hash ca0ec4e1dde27b42c0df0cd9278289dce950adbad32dc178f

058c503fa939381

Threat Vetta Loader USB infector

https://docs.python.org/3/library/marshal.html?highlight=marshal%20loads#marshal.loads

18

Vetta Loader Report

 Report

Figure 19 - WinSoft Update Service archive

The archive is posing as a “WinSoft Update Service”, where the USB infector is installed. The code is written with the

TA is using the Python embedded version, such technique has also been seen in STRRAT but for Java. In this case

the malicious files are the following:

• program.pyz, a Python archive which can be directly executed (zipapp — Manage executable Python zip

archives — Python 3.12.0 documentation), it’s the main the malicious sample

• program.lock

• instDate.dat

• cUuid.dat

• overload (in this case it’s missing, should contain additional code to execute)

• runs (directory, in this case it’s missing, should contain additional files with code to execute)

https://docs.python.org/3/library/zipapp.html
https://docs.python.org/3/library/zipapp.html

19

Vetta Loader Report

 Report

The malicious modules are the following:

start.py

Figure 20 - Start.py main module

Start.py is the main module, at the beginning it checks if the file program.lock exists and removes it, if any

exception occurs it exit. Then if present, the sample will execute code from the overload file, which in this case is

missing and from the files in the runs directory, which in this case is empty, for both cases if any exception occurs

it will only pass. Once done, it will execute the modules coronausb, cboard, runservice and connection

20

Vetta Loader Report

 Report

coronausb.py

Figure 21 - Main method of coronausb module

The module starts iterating the USB drives available on the victim machine, calling the method createHiddenFolder

for each of them and opening explorer.exe to continue with the infection.

Figure 22 - Creation of hidden folder

21

Vetta Loader Report

 Report

The createHiddenFolder method is responsible for creating the hidden folder using the empty character, moving

all the files to this folder and sets its attributes as hidden and creating explorer.ps1.

Figure 23 - Arguments for fake explorer process

It then creates the .LNK file and sets the arguments for the fake explorer process that will be launched through the

script explorer.ps1 which we analyzed at the beginning of the report.

22

Vetta Loader Report

 Report

cboard.py

Figure 24 - Python clipper

This module is a simple Python clipper, the following are the replaced cryptocurrency addresses:

• bc1qk55vk7wjgzg3pmxlh59rv5dlgewd9jem5nrt4w

• DHhrFwsiHhm4GWN9Fn4tkGXiJUmfigso7Q

• 0xeA1b0564456cdA8fE1D17306D7D5a59Ca1fC83E6

• 49FEMQZdLSJXtv6EoRPRhzjHfcihJKDy9bLBv8dvF5HPdyKSimV9MpfgU8A35ornNF87NGgVHTsYTBmsMXN8X

FT7FghFy3F

Investigating the BTC address, it emerged that the actor earned a considerable amount of money with its activities.

Indeed, it has a balance of about 1.19BTC on that wallet:

23

Vetta Loader Report

 Report

Figure 25 - Bitcoin address

24

Vetta Loader Report

 Report

runservice.py

Figure 26 - Service that exfiltrates the collected data

This module is responsible for continuously reporting the infection of the victim along with some systeminfo

collected by using the module info.py which are sent to: hxxps://luke.compeyson.eu.]org/runservice/api with

these paths: /public.php and /public_result.php. The following table shows the collected systeminfo:

Name Description

computerId ID found in the file cUuid.dat or generated using uuid.uuid1()

username The username of the victim

Install_date Found in the file instDate.dat or retrieved by using os.path.getctime to readme.rst

start_time The current time using time.time()

25

Vetta Loader Report

 Report

Installed_from Found in %appdata%\ from_machine_uuid.dat, it identifies from which machine the victim

was infected

specs Computer specs

wifi Retrieves the machine interfaces by using netsh wlan show interfaces

geolocation Retrieves the machine interfaces BSSID to get information on the victim location using the

Google API

coronausb Status of the infector module

Info.py
In this module we find all the information relating to the infected computer. First it checks the files present in the

current directory by looking the Python executable pythonw.exe and the .dat file relating to the computerID.

Figure 27 - Initial check

Then we find the methods for the update of the information regarding the infected machine and the installation

date of the malware.

26

Vetta Loader Report

 Report

Figure 28 - Find installation date and update computer info

27

Vetta Loader Report

 Report

The following method is used to obtain the specifications of the computer on which the executable runs,

Figure 29 - Method used to retrieve specifications of the infected machine

while these two methods have the task of collecting network information such as the network interface, the wlan

bssid, the wifi signal strength.

Figure 30 - Retrieve network information

Finally it performs the IP geolocation.

Figure 31 - IP geolocation

28

Vetta Loader Report

 Report

connection.py
This file contains methods for establishing the connection to the C2.

Figure 32 - C2 receiving data

The elaborateRequest method takes care of creating the http request containing the computerId and a capture of

the screen. Going deeper into the analysis of the code, we see that there is a check for the automatic sending of

these information. Considering that the value of the variable enable_auto_send is set to true, if the time elapsed

since the last sending is greater than 10 minutes, the data is sent again to the C2.

Figure 33 - Creation of HTTP request containing computerId and screen capture

29

Vetta Loader Report

 Report

Finally, the start() method carries out the POST request to the C2, sending the collected data by encoding it in

base64.

Figure 34 - Main method of the module

In the end it starts a thread using the method contained in the file executer.py to parse the json file containing the

response to the post request.

Figure 35 - Module executor.py used for thread creation

Hunting and Overview of the Campaign

30

Vetta Loader Report

 Report

As mentioned before, the campaign involves the use of a vimeo video which is still online

Figure 36 Description of the video containing the hidden payload

Thanks to a snapshot in archive.org done on May 2, we retrieved also the old Powershell code

Figure 37 Old payload

Which is described in a tweet of @Tac_Mangusta, but we wanted to highlight the attribution to zgRAT. By looking at

the strings in memory of the supposed zgRAT Sample, once again we noticed the same pattern of strings, also

having the campaign ID similar to the NodeJS Sample

https://web.archive.org/web/20230502083500/https:/vimeo.com/804838895
https://twitter.com/Tac_Mangusta/status/1678185981344731137

31

Vetta Loader Report

 Report

Figure 38 Correct attribution to Vetta Loader

For the overview of the campaign, we are confident that it has been around since 2020 (oldest Sample found

81875a13eded6ccf4ea0a41cdcf62f62287aba9fb2cd80d2e7444fae6340882b) and most of the victims/submitters

are Italian by looking at the telemetry on Virustotal and the internal cases.

32

Vetta Loader Report

 Report

Figure 39 Submitters on Virustotal showing a majority of Italian victims

Also, we found posts related to the campaign in the support forums of Microsoft, Malwarebytes and Bitdefender.

This phenomenon demonstrated how this threat is spread in Italy, and how many users affected. An example of

these requests in support forum is the following.

https://answers.microsoft.com/it-it/windows/forum/all/collegamenti-inutili-nella-chiavetta/c7a6c952-d6a5-42d8-8092-5348e2243058
https://forums.malwarebytes.com/topic/299265-malwarebytes-reports-riskware-through-powershell/
https://community.bitdefender.com/en/discussion/90872/tons-of-a-malicious-url-was-blocked-on-computername

33

Vetta Loader Report

 Report

Figure 40 Italian victim describing the behaviour of Vetta Loader (with same c2) while using external devices

34

Vetta Loader Report

 Report
Conclusion

USB drives confirm to be one of the most reliable means of malware distribution and Vetta Loader is one of the

most spread in Italy. The importance of deploy and keep track of malware distribution to these devices is

fundamental, because users tend to retain quite reliable the content of their own drives and they are not available

to sanitize them, and this human bias is shown in the just previous paragraph, where users define the infection as

an “annoying thing”, and they don’t think about the risk of the infection.

However, as previously stated, we observed and mitigated this threat also in large manufacturing companies. Thus,

Vetta Loader is a serious threat for threat landscape in industries. So, Yoroi suggests to use only trusted drives,

enable automatic antivirus scans, and adopt USB sanitizers.

35

Vetta Loader Report

 Report

Indicators of Compromise

• Dropurl

o evinfeoptasw[.]dedyn[.]io

o wjecpujpanmwm[.]tk

o studiofotografico35mm[.]altervista[.]org

o ncnskjhrbefwifjhww[.]tk

o geraldonsboutique[.]altervista[.]org

o captcha[.]grouphelp[.]top

o lucaespo[.]altervista[.]org

o captcha[.]tgbot[.]it

o monumental[.]ga

o bobsmith[.]apiworld[.]cf

o luke[.]compeysonp[.]eu[.]org

o eu1[.]microtunnel[.]it

• Samples

o 060882f97ace7cb6238e714fd48b3448939699e9f085418af351c42b401a1227

o 15d977dae1726c2944b0b4965980a92d8e8616da20e4d47d74120073cbc701b3

o 180b12a5f16ff2269d640b5a28d0b1d46013f3f163ee8b3c3b34166905c78e0c

o 218a819360df70ecc4cdbdfac4fbc0e49be3f4cadbad04d591a3de992617dac2

o 39ae5ca001383b9bd0e97eb6877279a9f366935a49f511e3a51b1aefdc85ee7e

o 4f05f962f321aa294e8dd185c6c86891183d175f54863e49e0151c1237287eb8

o 5dcbfc437c20e2e5e25a717017fd525cbe4834ce888c47002001c28cf85c20b8

o 664194273245a994abf929898d9ca5ec5cfb594d4b024935050dd9f6a1a42b67

o 686a6fe6db2b8510555559f05132d5f9776051c74d91d96f0ac7eed1a33f8d4d

o 742170a2102136e2d96dfe1ce9c2a41a6c049777b541723ea6d90dc22c48503b

o 81875a13eded6ccf4ea0a41cdcf62f62287aba9fb2cd80d2e7444fae6340882b

o 84674ae8db63036d1178bb42fa5d1b506c96b3b22ce22a261054ef4d021d2c69

o 8a492973b12f84f49c52216d8c29755597f0b92a02311286b1f75ef5c265c30d

o 8c25b73245ada24d2002936ea0f3bcc296fdcc9071770d81800a2e76bfca3617

o 8eff1963dbfb05c51be299ca74fb40cc8b4ddf204c94f508173744466fdb8749

o 90cb376fba68978a556af5861c5b8084c18ad62c75d08ac29dd768ad1029c150

o a47e7b940c6387b21ad32181c85a7972c43d2568e26f35c28f8ea9fde0cb3cea

o a4f20b60a50345ddf3ac71b6e8c5ebcb9d069721b0b0edc822ed2e7569a0bb40

o b9ffba378d4165f003f41a619692a8898aed2e819347b25994f7a5e771045217

o ca0ec4e1dde27b42c0df0cd9278289dce950adbad32dc178f058c503fa939381

o d9ebb6958afcd1907651487062108ec56a2af9eb935f2437156584081cb56b2f

o e78f9fc1df1295c561b610de97b945ff1a94c6940b59cdd3fcb605b9b1a65a0d

36

Vetta Loader Report

 Report

Yoroi S.r.l.
www.yoroi.company - info@yoroi.company

Piazza Sallustio, 9

00187 – Roma (RM)

+39 (051) 0301005

Yoroi S.r.l. ® 2014-2021 – All rights reserved

Yoroi S.r.l. company directed and coordinated by Tinexta S.p.A.

Yoroi ® is a trademark

N.: 016792947

 ISO/IEC 27017: 2015

mailto:info@yoroi.company
https://www.trusted-introducer.org/directory/teams/cert-yoroi.html

